A Neural Network Approach to the Recognition of the K Distribution Shape Parameter associated with Sea Clutter

 

Guardado en:
Detalles Bibliográficos
Autores: Machado Fernández, José Raúl, García Delgado, Briam, Machado Gil, Alejandro
Formato: artículo original
Estado:Versión publicada
Fecha de Publicación:2017
Descripción:The main problem faced today by sea radars is the elimination of clutter, which is undesirable contribution that appears mixed with the target information. The unwanted signal is produced by the echo caused by the rebound of the primary emission at the sea surface. One of the most popular probability distributions in clutter modeling is the K distribution. Helpful in efficient detectors design, a system able to recognize the shape parameter of the K distribution, knowing a priori the value of the scale parameter, is proposed. The result is appropriate for real time operating conditions as it’s based on a neural networks approximation in the pattern recognition role.
País:Portal de Revistas UCR
Institución:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Lenguaje:Inglés
OAI Identifier:oai:portal.ucr.ac.cr:article/23994
Acceso en línea:https://revistas.ucr.ac.cr/index.php/ingenieria/article/view/23994
Palabra clave:Sea Clutter
Artificial Neural Networks
K Distribution
Distribution Parameter Recognition
Distribution Parameter Identification
Clutter Marino
Redes Neuronales Artificiales
Distribución K
Estimación de Parámetros de Distribuciones Probabilísticas
aprendizaje por computadora
modelación estadística