Discrete sampling theorem to Shannon’s sampling theorem using the hyperreal numbers R

 

Guardado en:
Detalles Bibliográficos
Autores: Simancas-García, José L., George-González, Kemel
Formato: artículo original
Estado:Versión publicada
Fecha de Publicación:2021
Descripción:Shannon’s sampling theorem is one of the most important results of modern signal theory. It describes the reconstruction of any band-limited signal from a finite number of its samples. On the other hand, although less well known, there is the discrete sampling theorem, proved by Cooley while he was working on the development of an algorithm to speed up the calculations of the discrete Fourier transform. Cooley showed that a sampled signal can be resampled by selecting a smaller number of samples, which reduces computational cost. Then it is possible to reconstruct the original sampled signal using a reverse process. In principle, the two theorems are not related. However, in this paper we will show that in the context of Non Standard Mathematical Analysis (NSA) and Hyperreal Numerical System R, the two theorems are equivalent. The difference between them becomes a matter of scale. With the scale changes that the hyperreal number system allows, the discrete variables and functions become continuous, and Shannon’s sampling theorem emerges from the discrete sampling theorem.
País:Portal de Revistas UCR
Institución:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Lenguaje:Inglés
Español
OAI Identifier:oai:portal.ucr.ac.cr:article/43356
Acceso en línea:https://revistas.ucr.ac.cr/index.php/matematica/article/view/43356
Palabra clave:Sampling theorem
subsampling
hyperreal number system
infinitesimal calculus model
Teorema de Muestreo
Submuestreo
Sistema Numérico Hiperreal
Modelo de Cálculo Infinitesimal