Sensor fusion using entropic measures of dependence

 

Guardado en:
Detalles Bibliográficos
Autor: Deignan, Paul B.
Formato: artículo original
Estado:Versión publicada
Fecha de Publicación:2011
Descripción:As opposed to standard methods of association which rely on measures of central dispersion, entropic measures quantify multivalued relations. This distinction is especially important when high fidelity models of the sensed phenomena do not exist. The properties of entropic measures are shown to fit within the Bayesian framework of hierarchical sensor fusion. A method of estimating probabilistic structure for categorical and continuous valued measurements that is unbiased for finite data collections is presented. Additionally, a branch and bound method for optimal sensor suite selection suitable for either target refinement or anomaly detection is described. Finally, the methodology is applied against a known data set used in a standard data mining competition that features both sparse categorical and  ontinuous valued descriptors of a target. Excellent quantitative and computational results against this data set support the conclusion that the proposed methodology is promising for general purpose low level data fusion.
País:Portal de Revistas UCR
Institución:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Lenguaje:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/2099
Acceso en línea:https://revistas.ucr.ac.cr/index.php/matematica/article/view/2099
Palabra clave:Information theory
data association
fusion; estimation
entropy
Teoría de la información
datos de asociación
fusión
estimación
entropía