Sensor fusion using entropic measures of dependence

 

Đã lưu trong:
Chi tiết về thư mục
Tác giả: Deignan, Paul B.
Định dạng: artículo original
Trạng thái:Versión publicada
Ngày xuất bản:2011
Miêu tả:As opposed to standard methods of association which rely on measures of central dispersion, entropic measures quantify multivalued relations. This distinction is especially important when high fidelity models of the sensed phenomena do not exist. The properties of entropic measures are shown to fit within the Bayesian framework of hierarchical sensor fusion. A method of estimating probabilistic structure for categorical and continuous valued measurements that is unbiased for finite data collections is presented. Additionally, a branch and bound method for optimal sensor suite selection suitable for either target refinement or anomaly detection is described. Finally, the methodology is applied against a known data set used in a standard data mining competition that features both sparse categorical and  ontinuous valued descriptors of a target. Excellent quantitative and computational results against this data set support the conclusion that the proposed methodology is promising for general purpose low level data fusion.
Quốc gia:Portal de Revistas UCR
Tổ chức giáo dục:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Ngôn ngữ:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/2099
Truy cập trực tuyến:https://revistas.ucr.ac.cr/index.php/matematica/article/view/2099
Từ khóa:Information theory
data association
fusion; estimation
entropy
Teoría de la información
datos de asociación
fusión
estimación
entropía