Selective methodology of population dynamics for optimizing a multiobjective environment of job shop production

 

Guardado en:
Detalles Bibliográficos
Autores: Ruiz, Santiago, Castrillón, Omar, Sarache, William
Formato: artículo original
Estado:Versión publicada
Fecha de Publicación:2015
Descripción:This paper develops a methodology based on population genetics to improve the performance of two or more variables in job shop production systems. The methodology applies a genetic algorithm with special features in the individual selection when they pass from generation to generation. In comparison with the FIFO method, the proposed methodology showed better results in the variables makespan, idle time and energy cost. When compared with NSGA II, the methodology did not showed relevant differences in makespan and idle time; however better performance was obtained in energy cost and, especially, in the number of required iterations to get the optimal makespan.
País:Portal de Revistas UCR
Institución:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Lenguaje:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/17558
Acceso en línea:https://revistas.ucr.ac.cr/index.php/matematica/article/view/17558
Palabra clave:genetic algorithm
job
multiobjective
subpopulations
energy resources
makespan
population dynamics
algoritmo genético
job shop
multiobjetivo
subpoblaciones
recursos energéticos
dinámica de poblaciones