Selective methodology of population dynamics for optimizing a multiobjective environment of job shop production

 

Zapisane w:
Opis bibliograficzny
Autorzy: Ruiz, Santiago, Castrillón, Omar, Sarache, William
Format: artículo original
Status:Versión publicada
Data wydania:2015
Opis:This paper develops a methodology based on population genetics to improve the performance of two or more variables in job shop production systems. The methodology applies a genetic algorithm with special features in the individual selection when they pass from generation to generation. In comparison with the FIFO method, the proposed methodology showed better results in the variables makespan, idle time and energy cost. When compared with NSGA II, the methodology did not showed relevant differences in makespan and idle time; however better performance was obtained in energy cost and, especially, in the number of required iterations to get the optimal makespan.
Kraj:Portal de Revistas UCR
Instytucja:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Język:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/17558
Dostęp online:https://revistas.ucr.ac.cr/index.php/matematica/article/view/17558
Słowo kluczowe:genetic algorithm
job
multiobjective
subpopulations
energy resources
makespan
population dynamics
algoritmo genético
job shop
multiobjetivo
subpoblaciones
recursos energéticos
dinámica de poblaciones