Potential of Artificial Intelligence to Generate Health Research Reports of Decayed, Missed and Restored Teeth

 

Guardado en:
Detalles Bibliográficos
Autores: Costa, Eliana Dantas, Carneiro, José Andery, Guerra Zancan, Breno Augusto, Gaêta-Araujo, Hugo, Oliveira-Santos, Christiano, Macedo, Alessandra Alaniz, Tirapelli, Camila
Formato: artículo original
Estado:Versión publicada
Fecha de Publicación:2024
Descripción:This study aims to indicate the potential of artificial intelligence (AI) in epidemiological reports of decayed, missed and restored teeth. As a proof of concept our study model used panoramic x-ray images and an AI algorithm for tooth numbering, detection of the caries and restorations with accuracy over 80% for such diagnostic tasks. The output came as the number of decayed, missed and restored teeth according to patient´s age and the DMFT index (number of decayed, missing, and filled teeth) which varied from 3.6 (up to 20 years old) to 20.4 (+60 years old). Thus, it is suggested that AI is a promising method to automate health data collection through the analysis of x-rays.
País:Portal de Revistas UCR
Institución:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Lenguaje:Inglés
OAI Identifier:oai:portal.ucr.ac.cr:article/59184
Acceso en línea:https://revistas.ucr.ac.cr/index.php/Odontos/article/view/59184
Palabra clave:Artificial intelligence; Radiology; Dentistry; Radiography
Inteligencia artificial; Radiología; Odontología; Radiografía