Potential of Artificial Intelligence to Generate Health Research Reports of Decayed, Missed and Restored Teeth
Guardado en:
Autores: | , , , , , , |
---|---|
Formato: | artículo original |
Estado: | Versión publicada |
Fecha de Publicación: | 2024 |
Descripción: | This study aims to indicate the potential of artificial intelligence (AI) in epidemiological reports of decayed, missed and restored teeth. As a proof of concept our study model used panoramic x-ray images and an AI algorithm for tooth numbering, detection of the caries and restorations with accuracy over 80% for such diagnostic tasks. The output came as the number of decayed, missed and restored teeth according to patient´s age and the DMFT index (number of decayed, missing, and filled teeth) which varied from 3.6 (up to 20 years old) to 20.4 (+60 years old). Thus, it is suggested that AI is a promising method to automate health data collection through the analysis of x-rays. |
País: | Portal de Revistas UCR |
Institución: | Universidad de Costa Rica |
Repositorio: | Portal de Revistas UCR |
Lenguaje: | Inglés |
OAI Identifier: | oai:portal.ucr.ac.cr:article/59184 |
Acceso en línea: | https://revistas.ucr.ac.cr/index.php/Odontos/article/view/59184 |
Palabra clave: | Artificial intelligence; Radiology; Dentistry; Radiography Inteligencia artificial; Radiología; Odontología; Radiografía |