Interval Mathematics Applied to Critical Point Transitions

 

Guardado en:
Detalles Bibliográficos
Autor: Stradi, Benito A.
Formato: artículo original
Estado:Versión publicada
Fecha de Publicación:2005
Descripción:The determination of critical points of mixtures is important for both practical and theoretical reasons in the modeling of phase behavior, especially at high pressure. The equations that describe the behavior of complex mixtures near critical points are highly nonlinear and with multiplicity of solutions to the critical point equations. Interval arithmetic can be used to reliably locate all the critical points of a given mixture. The method also verifies the nonexistence of a critical point if a mixture of a given composition does not have one. This study uses an interval Newton/Generalized Bisection algorithm that provides a mathematical and computational guarantee that all mixture critical points are located. The technique is illustrated using several example problems. These problems involve cubic equation of state models; however, the technique is general purpose and can be applied in connection with other nonlinear problems.
País:Portal de Revistas UCR
Institución:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Lenguaje:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/248
Acceso en línea:https://revistas.ucr.ac.cr/index.php/matematica/article/view/248
Palabra clave:Critical Points
Interval Analysis
Computational Methods
Puntos Críticos
Análisis de Intervalos
Métodos Computacionales