Interval Mathematics Applied to Critical Point Transitions

 

Tallennettuna:
Bibliografiset tiedot
Tekijä: Stradi, Benito A.
Aineistotyyppi: artículo original
Tila:Versión publicada
Julkaisupäivä:2005
Kuvaus:The determination of critical points of mixtures is important for both practical and theoretical reasons in the modeling of phase behavior, especially at high pressure. The equations that describe the behavior of complex mixtures near critical points are highly nonlinear and with multiplicity of solutions to the critical point equations. Interval arithmetic can be used to reliably locate all the critical points of a given mixture. The method also verifies the nonexistence of a critical point if a mixture of a given composition does not have one. This study uses an interval Newton/Generalized Bisection algorithm that provides a mathematical and computational guarantee that all mixture critical points are located. The technique is illustrated using several example problems. These problems involve cubic equation of state models; however, the technique is general purpose and can be applied in connection with other nonlinear problems.
Maa:Portal de Revistas UCR
Organisaatio:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Kieli:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/248
Linkit:https://revistas.ucr.ac.cr/index.php/matematica/article/view/248
Sanahaku:Critical Points
Interval Analysis
Computational Methods
Puntos Críticos
Análisis de Intervalos
Métodos Computacionales