Interval Mathematics Applied to Critical Point Transitions

 

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف: Stradi, Benito A.
التنسيق: artículo original
الحالة:Versión publicada
تاريخ النشر:2005
الوصف:The determination of critical points of mixtures is important for both practical and theoretical reasons in the modeling of phase behavior, especially at high pressure. The equations that describe the behavior of complex mixtures near critical points are highly nonlinear and with multiplicity of solutions to the critical point equations. Interval arithmetic can be used to reliably locate all the critical points of a given mixture. The method also verifies the nonexistence of a critical point if a mixture of a given composition does not have one. This study uses an interval Newton/Generalized Bisection algorithm that provides a mathematical and computational guarantee that all mixture critical points are located. The technique is illustrated using several example problems. These problems involve cubic equation of state models; however, the technique is general purpose and can be applied in connection with other nonlinear problems.
البلد:Portal de Revistas UCR
المؤسسة:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
اللغة:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/248
الوصول للمادة أونلاين:https://revistas.ucr.ac.cr/index.php/matematica/article/view/248
كلمة مفتاحية:Critical Points
Interval Analysis
Computational Methods
Puntos Críticos
Análisis de Intervalos
Métodos Computacionales