La forma hexagonal regular de las células de las abejas como solución de algunos problemas de óptimo
সংরক্ষণ করুন:
| লেখক: | |
|---|---|
| বিন্যাস: | artículo original |
| বর্তমান অবস্থা: | Versión publicada |
| প্রকাশনার তারিখ: | 1996 |
| বিবরন: | Wax compression and honeycomb resistance, and some other hypothesis as well (elimination of empty spaces between cylindrical cells and approximate emulation of bees bodies) drive to the first optimization problem: among all polygons with n ≥ 3 sides circumscribed into a circle with a given radius, determine the polygon P ∗ n with the smallest perimeter. This extrema problem with an isogonal condition is solved with a Lagrange multipliers method. It is proven that P ∗ n is a regular polygon and n ∈ {3, 4, 6}. Finally, another minimum problem drives to n = 6. |
| দেশ: | Portal de Revistas UCR |
| প্রতিষ্ঠান: | Universidad de Costa Rica |
| Repositorio: | Portal de Revistas UCR |
| ভাষা: | Español |
| OAI Identifier: | oai:portal.ucr.ac.cr:article/48047 |
| অনলাইন ব্যবহার করুন: | https://revistas.ucr.ac.cr/index.php/matematica/article/view/48047 |
| মুখ্য শব্দ: | optimization honeycombs isogonal condition optimizaci´on panales de abejas condici´on isogonal |