La forma hexagonal regular de las células de las abejas como solución de algunos problemas de óptimo
Guardado en:
| Autor: | |
|---|---|
| Formato: | artículo original |
| Estado: | Versión publicada |
| Fecha de Publicación: | 1996 |
| Descripción: | Wax compression and honeycomb resistance, and some other hypothesis as well (elimination of empty spaces between cylindrical cells and approximate emulation of bees bodies) drive to the first optimization problem: among all polygons with n ≥ 3 sides circumscribed into a circle with a given radius, determine the polygon P ∗ n with the smallest perimeter. This extrema problem with an isogonal condition is solved with a Lagrange multipliers method. It is proven that P ∗ n is a regular polygon and n ∈ {3, 4, 6}. Finally, another minimum problem drives to n = 6. |
| País: | Portal de Revistas UCR |
| Institución: | Universidad de Costa Rica |
| Repositorio: | Portal de Revistas UCR |
| Lenguaje: | Español |
| OAI Identifier: | oai:portal.ucr.ac.cr:article/48047 |
| Acceso en línea: | https://revistas.ucr.ac.cr/index.php/matematica/article/view/48047 |
| Palabra clave: | optimization honeycombs isogonal condition optimizaci´on panales de abejas condici´on isogonal |