Métodos de punto interior para optimización cuadrática convexa con matrices no definidas positivas

 

Enregistré dans:
Détails bibliographiques
Auteurs: Palencia F., Gonzalo, Hing C., Rosina, Rojas C., Mariledy, Medina S., Denysde
Format: artículo original
Statut:Versión publicada
Date de publication:2008
Description:In this article a modification of the recursive algorithm of Cholesky is obtained that allows the factorization of Semi Definite Positive Matrices, even though these are not positive defined, without increasing the computational cost. Thanks to this factorization Convex Quadratic Programming Problems are transformed into Second Order Conical Problems, which are solved with the aid of the generalization of the Predictor-Corrector algorithm of Mehrotra for these problems. There are carried out numeric experiments for validating the results.
Pays:Portal de Revistas UCR
Institution:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Langue:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/284
Accès en ligne:https://revistas.ucr.ac.cr/index.php/matematica/article/view/284
Mots-clés:convex quadratic programming
second-order cones
interior point methods
programación cuadrática convexa
conos de segundo orden
métodos de punto interior