Search of Hadamard Matrices by Turyn Sequences
में बचाया:
| लेखक: | |
|---|---|
| स्वरूप: | artículo original |
| स्थिति: | Versión publicada |
| प्रकाशन तिथि: | 2011 |
| विवरण: | In this paper we study the Hadamard matrices and some algorithms to generate them. We review some theoretical aspects about Hadamard's conjecture, which asserts that every positive integer multiple of 4 is a Hadamard number. Then we describe the methods of Kronecker, Sylvester, Paley, Williamson, Goethals-Seidel, Cooper- Wallis, Baumert-Hall, Ehlich and supplementary dierence sets. Subsequently we settle the Hadamard sieve: 668 is lowest order for which is unknown if there exist an Hadamard matrix. Finally we propose a simulated annealing algorithms as alternative to nd Hadamard matrices from Turyn sequences. We found excellent solutions with this search method. |
| देश: | Portal de Revistas UCR |
| संस्थान: | Universidad de Costa Rica |
| Repositorio: | Portal de Revistas UCR |
| भाषा: | Español |
| OAI Identifier: | oai:portal.ucr.ac.cr:article/2094 |
| ऑनलाइन पहुंच: | https://revistas.ucr.ac.cr/index.php/matematica/article/view/2094 |
| संकेत शब्द: | Hadamard matrices simulated annealing combinatorial optimization matrices de Hadamard recocido simulado optimización combinatoria |