Search of Hadamard Matrices by Turyn Sequences
Đã lưu trong:
Tác giả: | |
---|---|
Định dạng: | artículo original |
Trạng thái: | Versión publicada |
Ngày xuất bản: | 2011 |
Miêu tả: | In this paper we study the Hadamard matrices and some algorithms to generate them. We review some theoretical aspects about Hadamard's conjecture, which asserts that every positive integer multiple of 4 is a Hadamard number. Then we describe the methods of Kronecker, Sylvester, Paley, Williamson, Goethals-Seidel, Cooper- Wallis, Baumert-Hall, Ehlich and supplementary dierence sets. Subsequently we settle the Hadamard sieve: 668 is lowest order for which is unknown if there exist an Hadamard matrix. Finally we propose a simulated annealing algorithms as alternative to nd Hadamard matrices from Turyn sequences. We found excellent solutions with this search method. |
Quốc gia: | Portal de Revistas UCR |
Tổ chức giáo dục: | Universidad de Costa Rica |
Repositorio: | Portal de Revistas UCR |
Ngôn ngữ: | Español |
OAI Identifier: | oai:portal.ucr.ac.cr:article/2094 |
Truy cập trực tuyến: | https://revistas.ucr.ac.cr/index.php/matematica/article/view/2094 |
Từ khóa: | Hadamard matrices simulated annealing combinatorial optimization matrices de Hadamard recocido simulado optimización combinatoria |