A mimetic finite difference method using Crank-Nicolson scheme for unsteady diffusion equation
Guardado en:
Autor: | |
---|---|
Formato: | artículo original |
Estado: | Versión publicada |
Fecha de Publicación: | 2009 |
Descripción: | In this article a new mimetic finite difference method to solve unsteady diffusion equation is presented. It uses Crank-Nicolson scheme to obtain time approximations and second order mimetic discretizations for gradient and divergence operators in space. The convergence of this new method is analyzed using Lax-Friedrichs equivalence theorem. This analysis is developed for one dimensional case. In addition to the analytical work, we provide experimental evidences that mimetic Crank-Nicolson scheme is better than standard finite difference because it achieves quadratic conver- gence rates, second order truncation errors and better approximations to the exact solution. |
País: | Portal de Revistas UCR |
Institución: | Universidad de Costa Rica |
Repositorio: | Portal de Revistas UCR |
Lenguaje: | Español |
OAI Identifier: | oai:portal.ucr.ac.cr:article/302 |
Acceso en línea: | https://revistas.ucr.ac.cr/index.php/matematica/article/view/302 |
Palabra clave: | mimetic scheme finite difference method unsteady diffusion equation Lax-Friedrichs equivalence theorem método mimético método de diferencias finitas ecuación no estática de difusión teorema de equivalencia de Lax-Friedrichs |