A mimetic finite difference method using Crank-Nicolson scheme for unsteady diffusion equation

 

সংরক্ষণ করুন:
গ্রন্থ-পঞ্জীর বিবরন
লেখক: Mannarino S., Iliana A. A.
বিন্যাস: artículo original
বর্তমান অবস্থা:Versión publicada
প্রকাশনার তারিখ:2009
বিবরন:In this article a new mimetic finite difference method to solve unsteady diffusion equation is presented. It uses Crank-Nicolson scheme to obtain time approximations and second order mimetic discretizations for gradient and divergence operators in space. The convergence of this new method is analyzed using Lax-Friedrichs equivalence theorem. This analysis is developed for one dimensional case. In addition to the analytical work, we provide experimental evidences that mimetic Crank-Nicolson scheme is better than standard finite difference because it achieves quadratic conver- gence rates, second order truncation errors and better approximations to the exact solution.
দেশ:Portal de Revistas UCR
প্রতিষ্ঠান:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
ভাষা:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/302
অনলাইন ব্যবহার করুন:https://revistas.ucr.ac.cr/index.php/matematica/article/view/302
মুখ্য শব্দ:mimetic scheme
finite difference method
unsteady diffusion equation
Lax-Friedrichs equivalence theorem
método mimético
método de diferencias finitas
ecuación no estática de difusión
teorema de equivalencia de Lax-Friedrichs