A mimetic finite difference method using Crank-Nicolson scheme for unsteady diffusion equation

 

Uloženo v:
Podrobná bibliografie
Autor: Mannarino S., Iliana A. A.
Médium: artículo original
Stav:Versión publicada
Datum vydání:2009
Popis:In this article a new mimetic finite difference method to solve unsteady diffusion equation is presented. It uses Crank-Nicolson scheme to obtain time approximations and second order mimetic discretizations for gradient and divergence operators in space. The convergence of this new method is analyzed using Lax-Friedrichs equivalence theorem. This analysis is developed for one dimensional case. In addition to the analytical work, we provide experimental evidences that mimetic Crank-Nicolson scheme is better than standard finite difference because it achieves quadratic conver- gence rates, second order truncation errors and better approximations to the exact solution.
Země:Portal de Revistas UCR
Instituce:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Jazyk:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/302
On-line přístup:https://revistas.ucr.ac.cr/index.php/matematica/article/view/302
Klíčové slovo:mimetic scheme
finite difference method
unsteady diffusion equation
Lax-Friedrichs equivalence theorem
método mimético
método de diferencias finitas
ecuación no estática de difusión
teorema de equivalencia de Lax-Friedrichs