A mimetic finite difference method using Crank-Nicolson scheme for unsteady diffusion equation
Wedi'i Gadw mewn:
Awdur: | |
---|---|
Fformat: | artículo original |
Statws: | Versión publicada |
Dyddiad Cyhoeddi: | 2009 |
Disgrifiad: | In this article a new mimetic finite difference method to solve unsteady diffusion equation is presented. It uses Crank-Nicolson scheme to obtain time approximations and second order mimetic discretizations for gradient and divergence operators in space. The convergence of this new method is analyzed using Lax-Friedrichs equivalence theorem. This analysis is developed for one dimensional case. In addition to the analytical work, we provide experimental evidences that mimetic Crank-Nicolson scheme is better than standard finite difference because it achieves quadratic conver- gence rates, second order truncation errors and better approximations to the exact solution. |
Gwlad: | Portal de Revistas UCR |
Sefydliad: | Universidad de Costa Rica |
Repositorio: | Portal de Revistas UCR |
Iaith: | Español |
OAI Identifier: | oai:portal.ucr.ac.cr:article/302 |
Mynediad Ar-lein: | https://revistas.ucr.ac.cr/index.php/matematica/article/view/302 |
Allweddair: | mimetic scheme finite difference method unsteady diffusion equation Lax-Friedrichs equivalence theorem método mimético método de diferencias finitas ecuación no estática de difusión teorema de equivalencia de Lax-Friedrichs |