A mimetic finite difference method using Crank-Nicolson scheme for unsteady diffusion equation

 

Gespeichert in:
Bibliographische Detailangaben
Verfasser: Mannarino S., Iliana A. A.
Format: artículo original
Status:Versión publicada
Publikationsdatum:2009
Beschreibung:In this article a new mimetic finite difference method to solve unsteady diffusion equation is presented. It uses Crank-Nicolson scheme to obtain time approximations and second order mimetic discretizations for gradient and divergence operators in space. The convergence of this new method is analyzed using Lax-Friedrichs equivalence theorem. This analysis is developed for one dimensional case. In addition to the analytical work, we provide experimental evidences that mimetic Crank-Nicolson scheme is better than standard finite difference because it achieves quadratic conver- gence rates, second order truncation errors and better approximations to the exact solution.
Land:Portal de Revistas UCR
Institution:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Sprache:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/302
Online Zugang:https://revistas.ucr.ac.cr/index.php/matematica/article/view/302
Stichwort:mimetic scheme
finite difference method
unsteady diffusion equation
Lax-Friedrichs equivalence theorem
método mimético
método de diferencias finitas
ecuación no estática de difusión
teorema de equivalencia de Lax-Friedrichs