A mimetic finite difference method using Crank-Nicolson scheme for unsteady diffusion equation
        Gardado en:
      
    
                  | Autor: | |
|---|---|
| Formato: | artículo original | 
| Estado: | Versión publicada | 
| Data de Publicación: | 2009 | 
| Descripción: | In this article a new mimetic finite difference method to solve unsteady diffusion equation is presented. It uses Crank-Nicolson scheme to obtain time approximations and second order mimetic discretizations for gradient and divergence operators in space. The convergence of this new method is analyzed using Lax-Friedrichs equivalence theorem. This analysis is developed for one dimensional case. In addition to the analytical work, we provide experimental evidences that mimetic Crank-Nicolson scheme is better than standard finite difference because it achieves quadratic conver- gence rates, second order truncation errors and better approximations to the exact solution. | 
| País: | Portal de Revistas UCR | 
| Institución: | Universidad de Costa Rica | 
| Repositorio: | Portal de Revistas UCR | 
| Idioma: | Español | 
| OAI Identifier: | oai:portal.ucr.ac.cr:article/302 | 
| Acceso en liña: | https://revistas.ucr.ac.cr/index.php/matematica/article/view/302 | 
| Palabra crave: | mimetic scheme finite difference method unsteady diffusion equation Lax-Friedrichs equivalence theorem método mimético método de diferencias finitas ecuación no estática de difusión teorema de equivalencia de Lax-Friedrichs | 
 
    