A mimetic finite difference method using Crank-Nicolson scheme for unsteady diffusion equation
保存先:
| 著者: | |
|---|---|
| フォーマット: | artículo original |
| 状態: | Versión publicada |
| 出版日付: | 2009 |
| その他の書誌記述: | In this article a new mimetic finite difference method to solve unsteady diffusion equation is presented. It uses Crank-Nicolson scheme to obtain time approximations and second order mimetic discretizations for gradient and divergence operators in space. The convergence of this new method is analyzed using Lax-Friedrichs equivalence theorem. This analysis is developed for one dimensional case. In addition to the analytical work, we provide experimental evidences that mimetic Crank-Nicolson scheme is better than standard finite difference because it achieves quadratic conver- gence rates, second order truncation errors and better approximations to the exact solution. |
| 国: | Portal de Revistas UCR |
| 機関: | Universidad de Costa Rica |
| Repositorio: | Portal de Revistas UCR |
| 言語: | Español |
| OAI Identifier: | oai:portal.ucr.ac.cr:article/302 |
| オンライン・アクセス: | https://revistas.ucr.ac.cr/index.php/matematica/article/view/302 |
| キーワード: | mimetic scheme finite difference method unsteady diffusion equation Lax-Friedrichs equivalence theorem método mimético método de diferencias finitas ecuación no estática de difusión teorema de equivalencia de Lax-Friedrichs |