A mimetic finite difference method using Crank-Nicolson scheme for unsteady diffusion equation
Сохранить в:
| Автор: | |
|---|---|
| Формат: | artículo original |
| Статус: | Versión publicada |
| Дата публикации: | 2009 |
| Описание: | In this article a new mimetic finite difference method to solve unsteady diffusion equation is presented. It uses Crank-Nicolson scheme to obtain time approximations and second order mimetic discretizations for gradient and divergence operators in space. The convergence of this new method is analyzed using Lax-Friedrichs equivalence theorem. This analysis is developed for one dimensional case. In addition to the analytical work, we provide experimental evidences that mimetic Crank-Nicolson scheme is better than standard finite difference because it achieves quadratic conver- gence rates, second order truncation errors and better approximations to the exact solution. |
| Страна: | Portal de Revistas UCR |
| Институт: | Universidad de Costa Rica |
| Repositorio: | Portal de Revistas UCR |
| Язык: | Español |
| OAI Identifier: | oai:portal.ucr.ac.cr:article/302 |
| Online-ссылка: | https://revistas.ucr.ac.cr/index.php/matematica/article/view/302 |
| Ключевое слово: | mimetic scheme finite difference method unsteady diffusion equation Lax-Friedrichs equivalence theorem método mimético método de diferencias finitas ecuación no estática de difusión teorema de equivalencia de Lax-Friedrichs |