Contributions to the Enrollment Process with Data Mining in Private Higher Education Institutions

 

Saved in:
Bibliographic Details
Authors: Estrada-Danell, Rafael Isaac, Zamarripa-Franco, Roman Alberto, Zúñiga-Garay, Pilar Giselle, Martínez-Trejo, Isaías
Format: artículo
Status:Versión publicada
Publication Date:2016
Description: This article aims to analyze how data mining (DM) optimizes the enrollment process, with the intention of designing a predictive model to manage private enrollment for higher education institutions of Mexico. It analyzes the current status of the higher education institutions in relation to its enrollment process and the application of the DM. With a correlational method, a dataset (DS) was used to model an entropy decision tree with the help of Rapid Miner software. The results show that it is possible to build and test a predictive model management of private enrollment for higher education institutions of Mexico as the ZAM&EST model proposed by the authors.
Country:Portal de Revistas UNA
Institution:Universidad Nacional de Costa Rica
Repositorio:Portal de Revistas UNA
Language:Español
Inglés
OAI Identifier:oai:ojs.www.una.ac.cr:article/7452
Online Access:https://www.revistas.una.ac.cr/index.php/EDUCARE/article/view/7452
Keyword:Educational management
educational planning
educational administration
higher education institutions
universities
information management
Gestión educacional
planificación de la educación
administración de la educación
instituto de enseñanza superior
universidad
gestión de la información