Quantum-AI Empowered Intelligent Surveillance: Advancing   Public Safety Through Innovative Contraband Detection

 

Na minha lista:
Detalhes bibliográficos
Autores: Ali Shah, Syed Atif, Algeelani, Nasir, Al-Sammarraie, Najeeb
Formato: artículo original
Estado:Versión publicada
Fecha de Publicación:2025
Descrição:[Objective] This research aims to develop an intelligent surveillance model, Quantum-RetinaNet, by integrating a RetinaNet model with Quantum Convolutional Neural Networks (QCNN) to enhance accuracy and processing speed, thus addressing limitations of conventional CNN-based approaches. The study evaluates Quantum-RetinaNet’s performance in real-time scenarios to determine its potential as a practical and scalable solution for intelligent monitoring in densely populated areas. [Methodology] This research integrates a RetinaNet model with Quantum Convolutional Neural Networks (Quantum CNN or QCNN), designating the resulting framework as Quantum-RetinaNet. By harnessing the quantum capabilities of QCNN, Quantum-RetinaNet achieves a balance between accuracy and processing speed. This innovative integration positions it as a game-changer, addressing the challenges of active monitoring in densely populated scenarios. As demand for efficient surveillance solutions grows, Quantum-RetinaNet offers a compelling alternative to existing CNN models, upholding accuracy standards without sacrificing real-time performance. [Results] The unique attributes of Quantum-RetinaNet have far-reaching implications for the future of intelligent surveillance. Its enhanced processing speed is poised to revolutionize the field, addressing the critical demand for systems that provide both rapid and precise monitoring [Conclusions] As Quantum-RetinaNet becomes the new standard, it ensures public safety and security while pushing the boundaries of AI in surveillance.
País:Portal de Revistas UNA
Recursos:Universidad Nacional de Costa Rica
Repositorio:Portal de Revistas UNA
Idioma:Inglés
OAI Identifier:oai:www.revistas.una.ac.cr:article/18960
Acesso em linha:https://www.revistas.una.ac.cr/index.php/uniciencia/article/view/18960
Palavra-chave:Quantum AI
Deep Learning
Quantum Deep Learning
CNN
QCNN
intelligent surveillance
weapon detection
IA cuántica
aprendizaje profundo
aprendizaje profundo cuántico
vigilancia inteligente
detección de armas
IA quântica
aprendizagem profunda
aprendizagem profunda quântica
vigilância inteligente
detecção de armas