Google Earth Engine: Evaluation of the scopes andlimitations for the resolve of agricultural problems in SantaLucía, Barva, Heredia

 

Guardat en:
Dades bibliogràfiques
Autors: Bastos Gutiérrez, Sara, Paniagua Jiménez, Diana, Vargas Martínez, Alejandro
Format: artículo original
Estat:Versión publicada
Data de publicació:2025
Descripció:Google Earth Engine (GEE) is presented as an innovative tool for agricultural manage- ment through the geospatial analysis of satellite imagery. In this study, GEE was used to classify soils at the Santa Lucía Experimental Farm (FESL), employing Sentinel-2 imagery from the Copernicus program with a resolution of 20 × 20 m throughout the year 2022. Four training classes were considered (pastures, forests, coffee, and infras- tructure) using the Random Forest classifier. Additionally, a pixel-by-pixel confusion matrix was generated for both the training and validation processes. The results show an overall accuracy of 96% for the training set and 61% for the validation set, highlighting the model’s efficiency in class distinction, although with potential for improvement in distinguishing between coffee and forest classes.
Pais:Portal de Revistas UNA
Institution:Universidad Nacional de Costa Rica
Repositorio:Portal de Revistas UNA
Idioma:Español
Inglés
Portugués
OAI Identifier:oai:www.revistas.una.ac.cr:article/22028
Accés en línia:https://www.revistas.una.ac.cr/index.php/geografica/article/view/22028
Paraula clau:Agriculture
Google Earth Engine
land use
satellite images
Sentinel 2
Agricultura
Imágenes satelitales
Uso de suelo
imagens de satélite
Sentinel-2
uso do solo