Artificial Neural Network Model to Predict Academic Results in Mathematics II

 

Guardado en:
Detalles Bibliográficos
Autores: Incio-Flores, Fernando Alain, Capuñay-Sanchez, Dulce Lucero, Estela-Urbina, Ronald Omar
Formato: artículo
Estado:Versión publicada
Fecha de Publicación:2023
Descripción:Objective. This article shows the design and training of an artificial neural network (ANN) to predict academic results of Civil Engineering students of the Fabiola Salazar Leguía National Intercultural University, from Bagua-Peru, in the subject of Mathematics II. Method. The CRISP-DM methodology was used, surveys were conducted to collect the data, and the RNA model was implemented in the Matlab software using the nnstart command and two learning algorithms: Scaled Conjugate Gradient (SCG) and Levenberg-Marquardt (LM). The performance of the model was evaluated through the mean square error and the correlation coefficient. Conclusions. The LM algorithm achieved better prediction effectiveness. 
País:Portal de Revistas UNA
Institución:Universidad Nacional de Costa Rica
Repositorio:Portal de Revistas UNA
Lenguaje:Español
Inglés
Portugués
OAI Identifier:oai:ojs.www.una.ac.cr:article/14516
Acceso en línea:https://www.revistas.una.ac.cr/index.php/EDUCARE/article/view/14516
Palabra clave:Red neuronal artificial
rendimiento académico
predicción