Artificial Neural Network Model to Predict Academic Results in Mathematics II

 

Enregistré dans:
Détails bibliographiques
Auteurs: Incio-Flores, Fernando Alain, Capuñay-Sanchez, Dulce Lucero, Estela-Urbina, Ronald Omar
Format: artículo
Statut:Versión publicada
Date de publication:2023
Description:Objective. This article shows the design and training of an artificial neural network (ANN) to predict academic results of Civil Engineering students of the Fabiola Salazar Leguía National Intercultural University, from Bagua-Peru, in the subject of Mathematics II. Method. The CRISP-DM methodology was used, surveys were conducted to collect the data, and the RNA model was implemented in the Matlab software using the nnstart command and two learning algorithms: Scaled Conjugate Gradient (SCG) and Levenberg-Marquardt (LM). The performance of the model was evaluated through the mean square error and the correlation coefficient. Conclusions. The LM algorithm achieved better prediction effectiveness. 
Pays:Portal de Revistas UNA
Institution:Universidad Nacional de Costa Rica
Repositorio:Portal de Revistas UNA
Langue:Español
Inglés
Portugués
OAI Identifier:oai:ojs.www.una.ac.cr:article/14516
Accès en ligne:https://www.revistas.una.ac.cr/index.php/EDUCARE/article/view/14516
Mots-clés:Red neuronal artificial
rendimiento académico
predicción