Artificial Neural Network Model to Predict Academic Results in Mathematics II

 

Kaydedildi:
Detaylı Bibliyografya
Yazarlar: Incio-Flores, Fernando Alain, Capuñay-Sanchez, Dulce Lucero, Estela-Urbina, Ronald Omar
Materyal Türü: artículo
Durum:Versión publicada
Yayın Tarihi:2023
Diğer Bilgiler:Objective. This article shows the design and training of an artificial neural network (ANN) to predict academic results of Civil Engineering students of the Fabiola Salazar Leguía National Intercultural University, from Bagua-Peru, in the subject of Mathematics II. Method. The CRISP-DM methodology was used, surveys were conducted to collect the data, and the RNA model was implemented in the Matlab software using the nnstart command and two learning algorithms: Scaled Conjugate Gradient (SCG) and Levenberg-Marquardt (LM). The performance of the model was evaluated through the mean square error and the correlation coefficient. Conclusions. The LM algorithm achieved better prediction effectiveness. 
Ülke:Portal de Revistas UNA
Kurum:Universidad Nacional de Costa Rica
Repositorio:Portal de Revistas UNA
Dil:Español
Inglés
Portugués
OAI Identifier:oai:ojs.www.una.ac.cr:article/14516
Online Erişim:https://www.revistas.una.ac.cr/index.php/EDUCARE/article/view/14516
Anahtar Kelime:Red neuronal artificial
rendimiento académico
predicción