System detection and automatic classification of pollen grain applies technical digital imaging process

 

Guardado en:
Detalles Bibliográficos
Autores: Arroyo Hernández, Jorge, Travieso González, Carlos M., Ticay Rivas, Jaime, Mora Mora, Federico, Salas Huertas, Oscar, Ramírez Bogantes, Melvin, Chavez, Luis Sánchez
Formato: artículo original
Estado:Versión publicada
Fecha de Publicación:2013
Descripción:This paper show the current state of a computer system that will allow the recognition and taxonomic classification of pollen grains of some of the most important tropical honey plants in Costa Rica using techniques of pre and post processing of digital images. The digital system uses filters on the images allowing it to detect and highlights its features and contour. Afterwards it is parametrized and finally a system of neuronal interconnections is used for the automatic recognition of pollen grains. The idea behind the implementation of a computer program is to move from a qualitative to a quantitative paradigm, using different mathematical tools and artificial intelligence in a way that can speed the process of recognition and classification of pollen grains. Using the PCA and the Sum at the outputs (CA) of 30 networks were able to obtain a success rate of 91,67 ± 3,13 which is highly promisisng for the purpose of the automatic classification system.
País:Portal de Revistas UNA
Institución:Universidad Nacional de Costa Rica
Repositorio:Portal de Revistas UNA
Lenguaje:Español
OAI Identifier:oai:ojs.www.una.ac.cr:article/4943
Acceso en línea:https://www.revistas.una.ac.cr/index.php/uniciencia/article/view/4943
Palabra clave:Pollen
Digital Image Processing
Palynology
Principal Components Analysis (PCA)
Neural Networks
Polen
procesamiento digital de imágenes
palinología
método de componentes principales (PCA)
redes neuronales