Para qué tantas hipótesis en el Criterio de la Integral

 

Saved in:
Bibliographic Details
Author: Acuña, Luis Alejandro
Format: artículo original
Status:Versión publicada
Publication Date:2015
Description:Se repasa el planteo tradicional del Criterio de la Integral para la convergencia de series (con las hipótesis de que la función en cuestión sea continua, positiva y decreciente, y la conclusión de que la serie y la integral impropia convergen ambas o divergen ambas). Se muestran ejemplos en los que fallan una o más de las hipótesis y la conclusión del criterio falla. Se demuestra que son innecesarias las hipótesis de continuidad y positividad, y finalmente que basta con una condición aún más débil que la de que la función sea decreciente. Los resultados se aplican tanto a la equivalencia entre la convergencia de la serie y la convergencia de la integral impropia como a la fórmula para la cota del error en las sumas parciales cuando la serie converge.
Country:RepositorioTEC
Institution:Instituto Tecnológico de Costa Rica
Repositorio:RepositorioTEC
Language:Español
OAI Identifier:oai:repositoriotec.tec.ac.cr:2238/9403
Online Access:https://revistas.tec.ac.cr/index.php/matematica/article/view/2137
https://hdl.handle.net/2238/9403
Access Level:acceso abierto
Keyword:Series infinitas; criterios de convergencia; continuidad; criterio integral