Automated adenocarcinoma lung cancer tissue images segmentation based on clustering

 

Guardado en:
Detalles Bibliográficos
Autores: Cervantes-Ramirez, Bryan, Siles, Francisco
Formato: artículo original
Fecha de Publicación:2022
Descripción:Cancer is one of the main dead causes worldwide. It is re- sponsible for an approximate of 1 out of 6 deaths globally and lung cancer is along breast cancer, the most common types of cancer in the population, which confirms the importance of studies associated with it. This work presents an approach toward lung cancer histological tissue images segmentation based on colour. The proposed method for the segmentation is K-means clustering, providing promising results that may become as an assistance for pathologists, as it can help them reduce the time consumed reviewing the slides and giving a more objective perspective in order to provide a diagnose and specific treatment.
País:RepositorioTEC
Institución:Instituto Tecnológico de Costa Rica
Repositorio:RepositorioTEC
Lenguaje:Inglés
OAI Identifier:oai:repositoriotec.tec.ac.cr:2238/14143
Acceso en línea:https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/6442
https://hdl.handle.net/2238/14143
Palabra clave:Digital pathology
pattern recognition
lung cancer
Patología digital
reconocimiento de patrones
cáncer de pulmón