A RTk - P-k approximation for linear elasticity yielding a broken H(div) convergent postprocessed stress

 

Bewaard in:
Bibliografische gegevens
Auteurs: Gatica, Gabriel N., Gatica, Luis F., Sequeira, Filander
Formaat: artículo
Publicatiedatum:2015
Omschrijving:We present a non-standard mixed finite element method for the linear elasticity problem in R-n with non-homogeneous Dirichlet boundary conditions. More precisely, our approach is based on a simplified interpretation of the pseudostress displacement formulation originally proposed in Arnold and Falk (1988), which does not require symmetric tensor spaces in the finite element discretization. We apply the classical Babuska-Brezzi theory to prove that the corresponding continuous and discrete schemes are well-posed. In particular, Raviart-Thomas spaces of order k >= 0 for the pseudostress and piecewise polynomials of degree <= k for the displacement can be utilized. In addition, complementing the results in the aforementioned reference, we introduce a new postprocessing formula for the stress recovering the optimally convergent approximation of the broken H(div)-norm. Numerical results confirm our theoretical findings. (C) 2015 Elsevier Ltd. All rights reserved.
Land:Repositorio UNA
Instelling:Universidad Nacional de Costa Rica
Repositorio:Repositorio UNA
Taal:Inglés
OAI Identifier:oai:null:11056/22745
Online toegang:http://hdl.handle.net/11056/22745
http://dx.doi.org/10.1016/j.aml.2015.05.009
Keyword:ELASTICIDAD
ELASTICIDAD LINEAL
MATEMÁTICA
MATHEMATICS
MIXED FINITE ELEMENT METHOD