A RTk - P-k approximation for linear elasticity yielding a broken H(div) convergent postprocessed stress

 

Uloženo v:
Podrobná bibliografie
Autoři: Gatica, Gabriel N., Gatica, Luis F., Sequeira, Filander
Médium: artículo
Datum vydání:2015
Popis:We present a non-standard mixed finite element method for the linear elasticity problem in R-n with non-homogeneous Dirichlet boundary conditions. More precisely, our approach is based on a simplified interpretation of the pseudostress displacement formulation originally proposed in Arnold and Falk (1988), which does not require symmetric tensor spaces in the finite element discretization. We apply the classical Babuska-Brezzi theory to prove that the corresponding continuous and discrete schemes are well-posed. In particular, Raviart-Thomas spaces of order k >= 0 for the pseudostress and piecewise polynomials of degree <= k for the displacement can be utilized. In addition, complementing the results in the aforementioned reference, we introduce a new postprocessing formula for the stress recovering the optimally convergent approximation of the broken H(div)-norm. Numerical results confirm our theoretical findings. (C) 2015 Elsevier Ltd. All rights reserved.
Země:Repositorio UNA
Instituce:Universidad Nacional de Costa Rica
Repositorio:Repositorio UNA
Jazyk:Inglés
OAI Identifier:oai:null:11056/22745
On-line přístup:http://hdl.handle.net/11056/22745
http://dx.doi.org/10.1016/j.aml.2015.05.009
Klíčové slovo:ELASTICIDAD
ELASTICIDAD LINEAL
MATEMÁTICA
MATHEMATICS
MIXED FINITE ELEMENT METHOD