Analysis and mixed-primal finite element discretisations for stress-assisted diffusion problems

 

保存先:
書誌詳細
著者: Gatica Pérez, Gabriel Nibaldo, Gómez Vargas, Bryan Andrés, Ruiz Baier, Ricardo
フォーマット: artículo original
出版日付:2018
その他の書誌記述:We analyse the solvability of a static coupled system of PDEs describing the diffusion of a solute into an elastic material, where the process is affected by the stresses exerted in the solid. The problem is formulated in terms of solid stress, rotation tensor, solid displacement, and concentration of the solute. Existence and uniqueness of weak solutions follow from adapting a fixed-point strategy decoupling linear elasticity from a generalised Poisson equation. We then construct mixed-primal and augmented mixed-primal Galerkin schemes based on adequate finite element spaces, for which we rigorously derive a priori error bounds. The convergence of these methods is confirmed through a set of computational tests in 2D and 3D.
国:Kérwá
機関:Universidad de Costa Rica
Repositorio:Kérwá
言語:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/86446
オンライン・アクセス:https://hdl.handle.net/10669/86446
キーワード:Linear elasticity
Stress-assisted diffusion
Mixed-primal formulation
Fixed-point theory
Finite element methods
A priori error bounds