Analysis of a semi-augmented mixed finite element method for double-diffusive natural convection in porous media

 

Guardado en:
Detalles Bibliográficos
Autores: Álvarez Guadamuz, Mario Andrés, Colmenares García, Eligio Antonio, Sequeira Chavarría, Filander A.
Formato: artículo original
Fecha de Publicación:2022
Descripción:In this paper we study a stationary double-diffusive natural convection problem in porous media given by a Navier-Stokes/Brinkman type system, for describing the velocity and the pressure, coupled to a vector advection-diffusion equation relate to the heat and substance concentration, of a viscous fluid in a porous media with physical boundary conditions. The model problem is rewritten in terms of a first-order system, without the pressure, based on the introduction of the strain tensor and a nonlinear pseudo-stress tensor in the fluid equations. After a variational approach, the resulting weak model is then augmented using appropriate redundant penalization terms for the fluid equations along with a standard primal formulation for the heat and substance concentration. Then, it is rewritten as an equivalent fixed-point problem. Well-posedness results for both the continuous and the discrete schemes are stated, as well as the respective convergence result under certain regularity assumptions combined with the Lax-Milgram theorem, and the Banach and Brouwer fixed-point theorems. In particular, Raviart-Thomas elements of order k are used for approximating the pseudo-stress tensor, piecewise polynomials of degree ≤k and ≤k+1 are utilized for approximating the strain tensor and the velocity, respectively, and the heat and substance concentration are approximated by means of Lagrange finite elements of order ≤k+1. Optimal a priori error estimates are derived and confirmed through some numerical examples that illustrate the performance of the proposed semi-augmented mixed-primal scheme.
País:Kérwá
Institución:Universidad de Costa Rica
Repositorio:Kérwá
Lenguaje:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/87544
Acceso en línea:https://www.sciencedirect.com/science/article/abs/pii/S0898122122001225?via%3Dihub#!
https://hdl.handle.net/10669/87544
Palabra clave:Double-diffusive natural convection
Oberbeck-Boussinesq model
Augmented formulation
Mixed-primal finite element method
Fixed point theory
A priori error analysis