Analysis and mixed-primal finite element discretisations for stress-assisted diffusion problems

 

Uloženo v:
Podrobná bibliografie
Autoři: Gatica Pérez, Gabriel Nibaldo, Gómez Vargas, Bryan Andrés, Ruiz Baier, Ricardo
Médium: artículo original
Datum vydání:2018
Popis:We analyse the solvability of a static coupled system of PDEs describing the diffusion of a solute into an elastic material, where the process is affected by the stresses exerted in the solid. The problem is formulated in terms of solid stress, rotation tensor, solid displacement, and concentration of the solute. Existence and uniqueness of weak solutions follow from adapting a fixed-point strategy decoupling linear elasticity from a generalised Poisson equation. We then construct mixed-primal and augmented mixed-primal Galerkin schemes based on adequate finite element spaces, for which we rigorously derive a priori error bounds. The convergence of these methods is confirmed through a set of computational tests in 2D and 3D.
Země:Kérwá
Instituce:Universidad de Costa Rica
Repositorio:Kérwá
Jazyk:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/86446
On-line přístup:https://hdl.handle.net/10669/86446
Klíčové slovo:Linear elasticity
Stress-assisted diffusion
Mixed-primal formulation
Fixed-point theory
Finite element methods
A priori error bounds