On the dynamics of a quadratic Schrödinger system in dimension n = 5

 

Uloženo v:
Podrobná bibliografie
Autoři: Noguera Salgado, Norman F., Pastor Ferreira, Ademir
Médium: artículo original
Datum vydání:2018
Popis:In this work we give a sharp criterion for the global well-posedness, in the energy space, for a system of nonlinear Schr¨odinger equations with quadratic interaction in dimension n = 5. The criterion is given in terms of the charge and energy of the ground states associated with the system, which are obtained by minimizing a Weinstein-type functional. The main result is then obtained in view of a sharp Gagliardo-Nirenberg-type inequality.
Země:Kérwá
Instituce:Universidad de Costa Rica
Repositorio:Kérwá
Jazyk:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/91940
On-line přístup:https://intlpress.com/site/pub/pages/journals/items/dpde/content/vols/0017/0001/a001/index.php
https://hdl.handle.net/10669/91940
Klíčové slovo:Global well-posedness
Schrödinger systems
blow up
Ground states solutions