On the dynamics of a quadratic Schrödinger system in dimension n = 5
Сохранить в:
| Авторы: | , |
|---|---|
| Формат: | artículo original |
| Дата публикации: | 2018 |
| Описание: | In this work we give a sharp criterion for the global well-posedness, in the energy space, for a system of nonlinear Schr¨odinger equations with quadratic interaction in dimension n = 5. The criterion is given in terms of the charge and energy of the ground states associated with the system, which are obtained by minimizing a Weinstein-type functional. The main result is then obtained in view of a sharp Gagliardo-Nirenberg-type inequality. |
| Страна: | Kérwá |
| Институт: | Universidad de Costa Rica |
| Repositorio: | Kérwá |
| Язык: | Inglés |
| OAI Identifier: | oai:kerwa.ucr.ac.cr:10669/91940 |
| Online-ссылка: | https://intlpress.com/site/pub/pages/journals/items/dpde/content/vols/0017/0001/a001/index.php https://hdl.handle.net/10669/91940 |
| Ключевое слово: | Global well-posedness Schrödinger systems blow up Ground states solutions |