Faà di Bruno Hopf algebras

 

Guardado en:
Detalles Bibliográficos
Autores: Figueroa González, Héctor, Gracia Bondía, José M., Várilly Boyle, Joseph C.
Formato: artículo original
Fecha de Publicación:2022
Descripción:This is a short review on the Faà di Bruno formulas, implementing composition of real-analytic functions, and a Hopf algebra associated to such formulas. This structure allows, among several other things, a short proof of the Lie-Scheffers theorem, and relating the Lagrange inversion formulas with antipodes. It is also the maximal commutative Hopf subalgebra of the one used by Connes and Moscovici to study diffeomorphisms in a noncommutative geometry setting. The link of Faà di~Bruno formulas with the theory of set partitions is developed in some detail.
País:Kérwá
Institución:Universidad de Costa Rica
Repositorio:Kérwá
Lenguaje:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/87800
Acceso en línea:https://revistas.unal.edu.co/index.php/recolma/article/view/105611
https://hdl.handle.net/10669/87800
Palabra clave:Desarrollo de Faà di Bruno
Algebra de Hopf
Polinomios de Bell
MATEMÁTICAS
EDUCACIÓN
ALGEBRA