Faà di Bruno Hopf algebras
Guardado en:
| Autores: | , , |
|---|---|
| Formáid: | artículo original |
| Fecha de Publicación: | 2022 |
| Cur Síos: | This is a short review on the Faà di Bruno formulas, implementing composition of real-analytic functions, and a Hopf algebra associated to such formulas. This structure allows, among several other things, a short proof of the Lie-Scheffers theorem, and relating the Lagrange inversion formulas with antipodes. It is also the maximal commutative Hopf subalgebra of the one used by Connes and Moscovici to study diffeomorphisms in a noncommutative geometry setting. The link of Faà di~Bruno formulas with the theory of set partitions is developed in some detail. |
| País: | Kérwá |
| Institiúid: | Universidad de Costa Rica |
| Repositorio: | Kérwá |
| Teanga: | Inglés |
| OAI Identifier: | oai:kerwa.ucr.ac.cr:10669/87800 |
| Rochtain Ar Líne: | https://revistas.unal.edu.co/index.php/recolma/article/view/105611 https://hdl.handle.net/10669/87800 |
| Palabra clave: | Desarrollo de Faà di Bruno Algebra de Hopf Polinomios de Bell MATEMÁTICAS EDUCACIÓN ALGEBRA |