Hopf algebras in noncommutative geometry

 

Uloženo v:
Podrobná bibliografie
Autor: Várilly Boyle, Joseph C.
Médium: capítulo de libro
Datum vydání:2003
Popis:We give an introductory survey to the use of Hopf algebras in several problems of noncommutative geometry. The main example, the Hopf algebra of rooted trees, is a graded, connected Hopf algebra arising from a universal construction. We show its relation to the algebra of transverse differential operators introduced by Connes and Moscovici in order to compute a local index formula in cyclic cohomology, and to the several Hopf algebras defined by Connes and Kreimer to simplify the combinatorics of perturbative renormalization. We explain how characteristic classes for a Hopf module algebra can be obtained from the cyclic cohomology of the Hopf algebra which acts on it. Finally, we discuss the theory of noncommutative spherical manifolds and show how they arise as homogeneous spaces of certain compact quantum groups.
Země:Kérwá
Instituce:Universidad de Costa Rica
Repositorio:Kérwá
Jazyk:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/88493
On-line přístup:https://www.worldscientific.com/doi/10.1142/9789812705068_0001
https://hdl.handle.net/10669/88493
Klíčové slovo:GEOMETRY
ALGEBRA