Local divisibility and model completeness of a theory of real closed rings

 

Guardado en:
Detalles Bibliográficos
Autor: Guier Acosta, Jorge Ignacio
Formato: comunicación de congreso
Fecha de Publicación:2021
Descripción:Let T∗ be the theory of lattice-ordered rings convex in von Neumann regular real closed f-rings, without minimal idempotents (non zero) that are divisible-projectable and sc-regular. I introduce a binary relation describing local divisibility. If this relation is added to the language of lattice ordered rings with the radical relation associated to the minimal prime spectrum (cf. [12]), it can be shown the model completeness of T∗.
País:Kérwá
Institución:Universidad de Costa Rica
Repositorio:Kérwá
Lenguaje:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/84950
Acceso en línea:http://www.logique.jussieu.fr/semsao/index.html
https://hdl.handle.net/10669/84950
Palabra clave:Model completeness
Real closed ring
Local divisibility