Local divisibility and model completeness of a theory of real closed rings

 

Zapisane w:
Opis bibliograficzny
Autor: Guier Acosta, Jorge Ignacio
Format: comunicación de congreso
Data wydania:2021
Opis:Let T∗ be the theory of lattice-ordered rings convex in von Neumann regular real closed f-rings, without minimal idempotents (non zero) that are divisible-projectable and sc-regular. I introduce a binary relation describing local divisibility. If this relation is added to the language of lattice ordered rings with the radical relation associated to the minimal prime spectrum (cf. [12]), it can be shown the model completeness of T∗.
Kraj:Kérwá
Instytucja:Universidad de Costa Rica
Repositorio:Kérwá
Język:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/84950
Dostęp online:http://www.logique.jussieu.fr/semsao/index.html
https://hdl.handle.net/10669/84950
Słowo kluczowe:Model completeness
Real closed ring
Local divisibility