Local divisibility and model completeness of a theory of real closed rings
Saved in:
| Author: | |
|---|---|
| Format: | comunicación de congreso |
| Publication Date: | 2021 |
| Description: | Let T∗ be the theory of lattice-ordered rings convex in von Neumann regular real closed f-rings, without minimal idempotents (non zero) that are divisible-projectable and sc-regular. I introduce a binary relation describing local divisibility. If this relation is added to the language of lattice ordered rings with the radical relation associated to the minimal prime spectrum (cf. [12]), it can be shown the model completeness of T∗. |
| Country: | Kérwá |
| Institution: | Universidad de Costa Rica |
| Repositorio: | Kérwá |
| Language: | Inglés |
| OAI Identifier: | oai:kerwa.ucr.ac.cr:10669/84950 |
| Online Access: | http://www.logique.jussieu.fr/semsao/index.html https://hdl.handle.net/10669/84950 |
| Keyword: | Model completeness Real closed ring Local divisibility |