Local divisibility and model completeness of a theory of real closed rings

 

Saved in:
Bibliographic Details
Author: Guier Acosta, Jorge Ignacio
Format: comunicación de congreso
Publication Date:2021
Description:Let T∗ be the theory of lattice-ordered rings convex in von Neumann regular real closed f-rings, without minimal idempotents (non zero) that are divisible-projectable and sc-regular. I introduce a binary relation describing local divisibility. If this relation is added to the language of lattice ordered rings with the radical relation associated to the minimal prime spectrum (cf. [12]), it can be shown the model completeness of T∗.
Country:Kérwá
Institution:Universidad de Costa Rica
Repositorio:Kérwá
Language:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/84950
Online Access:http://www.logique.jussieu.fr/semsao/index.html
https://hdl.handle.net/10669/84950
Keyword:Model completeness
Real closed ring
Local divisibility