Lacunary discrete spherical maximal functions

 

Uloženo v:
Podrobná bibliografie
Autoři: Kesler, Robert, Lacey, Michael T., Mena Arias, Darío Alberto
Médium: artículo preliminar
Datum vydání:2019
Popis:We prove new l^p(Z^d) bounds for discrete spherical averages in dimensions d greater than or equal to 5. We focus on the case of lacunary radii, first for general lacunary radii, and then for certain kinds of highly composite choices of radii. In particular, if Aλf is the spherical average of f over the discrete sphere of radius λ, we have for any lacunary sets of integers {λ 2 k}. We follow a style of argument from our prior paper, addressing the full supremum. The relevant maximal operator is decomposed into several parts; each part requires only one endpoint estimate.
Země:Kérwá
Instituce:Universidad de Costa Rica
Repositorio:Kérwá
Jazyk:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/89947
On-line přístup:https://nyjm.albany.edu/j/2019/25-24.html
https://hdl.handle.net/10669/89947
Klíčové slovo:MATHEMATICS