Uniform sparse bounds for discrete quadratic phase Hilbert transforms
Enregistré dans:
| Auteurs: | , |
|---|---|
| Format: | artículo original |
| Date de publication: | 2017 |
| Description: | Consider the discrete quadratic phase Hilbert Transform acting on $\ell^{2}(\mathbb{Z})$ finitely supported functions $$ H^{\alpha} f(n) : = \sum_{m \neq 0} \frac{e^{i\alpha m^2} f(n - m)}{m}. $$ We prove that, uniformly in $\alpha \in \bT$, there is a sparse bound for the bilinear form $\inn{H^{\alpha} f}{g}$. The sparse bound implies several mapping properties such as weighted inequalities in an intersection of Muckenhoupt and reverse H\"older classes. |
| Pays: | Kérwá |
| Institution: | Universidad de Costa Rica |
| Repositorio: | Kérwá |
| OAI Identifier: | oai:kerwa.ucr.ac.cr:10669/76050 |
| Accès en ligne: | https://link.springer.com/article/10.1007/s13324-017-0195-3 https://hdl.handle.net/10669/76050 |
| Mots-clés: | Discrete analysis Quadratic phase Sparse bounds Hilbert transform 515.733 Espacios de Hilbert |