Uniform sparse bounds for discrete quadratic phase Hilbert transforms

 

שמור ב:
מידע ביבליוגרפי
Autores: Kesler, Robert, Mena Arias, Darío Alberto
פורמט: artículo original
Fecha de Publicación:2017
תיאור:Consider the discrete quadratic phase Hilbert Transform acting on $\ell^{2}(\mathbb{Z})$ finitely supported functions $$ H^{\alpha} f(n) : = \sum_{m \neq 0} \frac{e^{i\alpha m^2} f(n - m)}{m}. $$ We prove that, uniformly in $\alpha \in \bT$, there is a sparse bound for the bilinear form $\inn{H^{\alpha} f}{g}$. The sparse bound implies several mapping properties such as weighted inequalities in an intersection of Muckenhoupt and reverse H\"older classes.
País:Kérwá
מוסד:Universidad de Costa Rica
Repositorio:Kérwá
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/76050
גישה מקוונת:https://link.springer.com/article/10.1007/s13324-017-0195-3
https://hdl.handle.net/10669/76050
מילת מפתח:Discrete analysis
Quadratic phase
Sparse bounds
Hilbert transform
515.733 Espacios de Hilbert