Sparse bounds for the discrete spherical maximal functions

 

Guardado en:
Detalles Bibliográficos
Autores: Kesler, Robert, Lacey, Michael T., Mena Arias, Darío Alberto
Formato: artículo original
Fecha de Publicación:2020
Descripción:We prove sparse bounds for the spherical maximal operator of Magyar, Stein and Wainger. The bounds are conjecturally sharp, and contain an endpoint estimate. The new method of proof is inspired by ones by Bourgain and Ionescu, is very efficient, and has not been used in the proof of sparse bounds before. The Hardy-Littlewood Circle method is used to decompose the multiplier into major and minor arc components. The efficiency arises as one only needs a single estimate on each element of the decomposition.
País:Kérwá
Institución:Universidad de Costa Rica
Repositorio:Kérwá
Lenguaje:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/85154
Acceso en línea:https://msp.org/paa/2020/2-1/p04.xhtml
https://hdl.handle.net/10669/85154
Palabra clave:Sparse
Discrete
Spherical average