Lacunary discrete spherical maximal functions

 

Gespeichert in:
Bibliographische Detailangaben
Autoren: Kesler, Robert, Lacey, Michael T., Mena Arias, Darío Alberto
Format: artículo preliminar
Publikationsdatum:2019
Beschreibung:We prove new l^p(Z^d) bounds for discrete spherical averages in dimensions d greater than or equal to 5. We focus on the case of lacunary radii, first for general lacunary radii, and then for certain kinds of highly composite choices of radii. In particular, if Aλf is the spherical average of f over the discrete sphere of radius λ, we have for any lacunary sets of integers {λ 2 k}. We follow a style of argument from our prior paper, addressing the full supremum. The relevant maximal operator is decomposed into several parts; each part requires only one endpoint estimate.
Land:Kérwá
Institution:Universidad de Costa Rica
Repositorio:Kérwá
Sprache:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/89947
Online Zugang:https://nyjm.albany.edu/j/2019/25-24.html
https://hdl.handle.net/10669/89947
Stichwort:MATHEMATICS