Lacunary discrete spherical maximal functions

 

Tallennettuna:
Bibliografiset tiedot
Tekijät: Kesler, Robert, Lacey, Michael T., Mena Arias, Darío Alberto
Aineistotyyppi: artículo preliminar
Julkaisupäivä:2019
Kuvaus:We prove new l^p(Z^d) bounds for discrete spherical averages in dimensions d greater than or equal to 5. We focus on the case of lacunary radii, first for general lacunary radii, and then for certain kinds of highly composite choices of radii. In particular, if Aλf is the spherical average of f over the discrete sphere of radius λ, we have for any lacunary sets of integers {λ 2 k}. We follow a style of argument from our prior paper, addressing the full supremum. The relevant maximal operator is decomposed into several parts; each part requires only one endpoint estimate.
Maa:Kérwá
Organisaatio:Universidad de Costa Rica
Repositorio:Kérwá
Kieli:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/89947
Linkit:https://nyjm.albany.edu/j/2019/25-24.html
https://hdl.handle.net/10669/89947
Sanahaku:MATHEMATICS