Lacunary discrete spherical maximal functions

 

保存先:
書誌詳細
著者: Kesler, Robert, Lacey, Michael T., Mena Arias, Darío Alberto
フォーマット: artículo preliminar
出版日付:2019
その他の書誌記述:We prove new l^p(Z^d) bounds for discrete spherical averages in dimensions d greater than or equal to 5. We focus on the case of lacunary radii, first for general lacunary radii, and then for certain kinds of highly composite choices of radii. In particular, if Aλf is the spherical average of f over the discrete sphere of radius λ, we have for any lacunary sets of integers {λ 2 k}. We follow a style of argument from our prior paper, addressing the full supremum. The relevant maximal operator is decomposed into several parts; each part requires only one endpoint estimate.
国:Kérwá
機関:Universidad de Costa Rica
Repositorio:Kérwá
言語:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/89947
オンライン・アクセス:https://nyjm.albany.edu/j/2019/25-24.html
https://hdl.handle.net/10669/89947
キーワード:MATHEMATICS