Lacunary discrete spherical maximal functions

 

Đã lưu trong:
Chi tiết về thư mục
Nhiều tác giả: Kesler, Robert, Lacey, Michael T., Mena Arias, Darío Alberto
Định dạng: artículo preliminar
Ngày xuất bản:2019
Miêu tả:We prove new l^p(Z^d) bounds for discrete spherical averages in dimensions d greater than or equal to 5. We focus on the case of lacunary radii, first for general lacunary radii, and then for certain kinds of highly composite choices of radii. In particular, if Aλf is the spherical average of f over the discrete sphere of radius λ, we have for any lacunary sets of integers {λ 2 k}. We follow a style of argument from our prior paper, addressing the full supremum. The relevant maximal operator is decomposed into several parts; each part requires only one endpoint estimate.
Quốc gia:Kérwá
Tổ chức giáo dục:Universidad de Costa Rica
Repositorio:Kérwá
Ngôn ngữ:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/89947
Truy cập trực tuyến:https://nyjm.albany.edu/j/2019/25-24.html
https://hdl.handle.net/10669/89947
Từ khóa:MATHEMATICS