Lacunary discrete spherical maximal functions

 

Guardado en:
書目詳細資料
Autores: Kesler, Robert, Lacey, Michael T., Mena Arias, Darío Alberto
格式: artículo preliminar
Fecha de Publicación:2019
實物特徵:We prove new l^p(Z^d) bounds for discrete spherical averages in dimensions d greater than or equal to 5. We focus on the case of lacunary radii, first for general lacunary radii, and then for certain kinds of highly composite choices of radii. In particular, if Aλf is the spherical average of f over the discrete sphere of radius λ, we have for any lacunary sets of integers {λ 2 k}. We follow a style of argument from our prior paper, addressing the full supremum. The relevant maximal operator is decomposed into several parts; each part requires only one endpoint estimate.
País:Kérwá
機構:Universidad de Costa Rica
Repositorio:Kérwá
語言:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/89947
在線閱讀:https://nyjm.albany.edu/j/2019/25-24.html
https://hdl.handle.net/10669/89947
Palabra clave:MATHEMATICS