Hyper-parameter tuning of classification and regression trees for software effort estimation

 

Bewaard in:
Bibliografische gegevens
Auteurs: Villalobos Arias, Leonardo, Quesada López, Christian Ulises, Martínez Porras, Alexandra, Jenkins Coronas, Marcelo
Formaat: comunicación de congreso
Publicatiedatum:2021
Omschrijving:Classification and regression trees (CART) have been reported to be competitive machine learning algorithms for software effort estimation. In this work, we analyze the impact of hyper-parameter tuning on the accuracy and stability of CART using the grid search, random search, and DODGE approaches. We compared the results of CART with support vector regression (SVR) and ridge regression (RR) models. Results show that tuning improves the performance of CART models up to a maximum of 0.153 standardized accuracy and reduce its stability radio to a minimum of 0.819. Also, CART proved to be as competitive as SVR and outperformed RR.
Land:Kérwá
Instelling:Universidad de Costa Rica
Repositorio:Kérwá
Taal:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/102209
Online toegang:https://hdl.handle.net/10669/102209
https://doi.org/10.1007/978-3-030-72660-7_56
Keyword:software effort estimation
hyper-parameter tuning